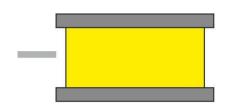
Special Steel WP7V

Established for Hot Stamping

Dr.-Ing. Jens Jonas Wilzer



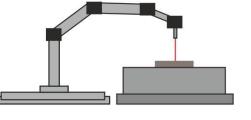
- 1. Hot Stamping Tools
- 2. Features of WP7V
- 3. Benefits of WP7V
- 4. Technical Information

Hot Stamping Process

Austenitization

(~1650-1750°F)

• 900-950°C


• 5-10 min

Transfer

- $t \sim 5 s$
- Loss of temperature

Hot Stamping

- T_{In} ~ 850-900°C (~1550-1650°F)
- $t \sim 8-20 \text{ s}$
- T_{Out} ~ 150-200°C (300-400°F)

Trimming

- Hard cutting
- Laser cutting

Important Aspects:

- Cooling rate inside the tool
- Wear impact on the tool
- Mechanical properties of the tool

- Productivity
- Product Quality

Challenges with Hot Stamping Tools

Source: J. J. Wilzer, Ch. Escher, M. Kotzian, S. Weber, W. Theisen: *Tool Steel with Improved Properties for Hot Stamping Tools*. HTM J. Heat Treatm. Mat. 71 (2016)

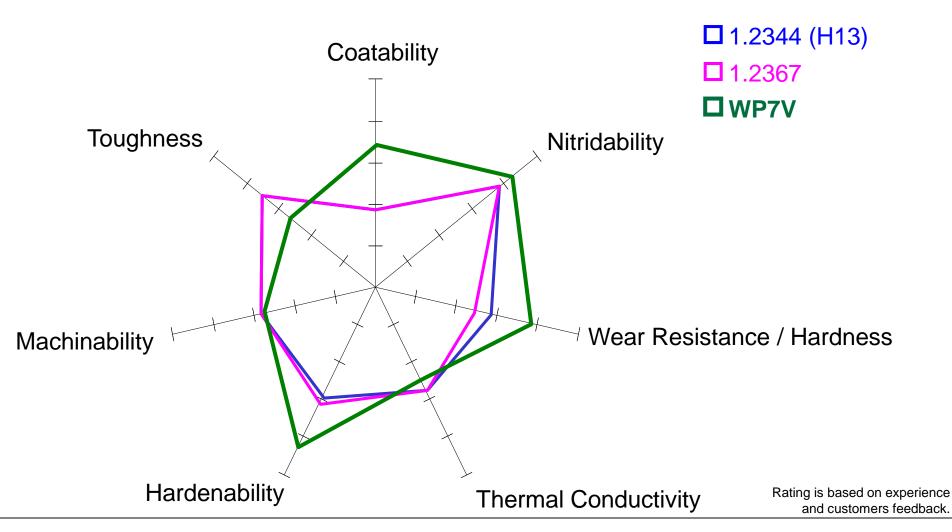
- High wear on the drawing rad
- Long cycle times due to cooling
- Extensive maintenance
- Cracking of the tool
- Extensive tooling
- Extensive time pressure

Requirements on Tool Steels

Source: J. J. Wilzer, Ch. Escher, M. Kotzian, S. Weber, W. Theisen: *Tool Steel with Improved Properties for Hot Stamping Tools*. HTM J. Heat Treatm. Mat. 71 (2016)

- High wear resistance
- High thermal conductivity
- High tempering resistance
- Sufficient toughness
- Good hardenability
- Good machinability
- Weldability

- 1. Hot Stamping Tools
- 2. Features of WP7V
- 3. Benefits of WP7V
- 4. Technical Information


Reference Analysis

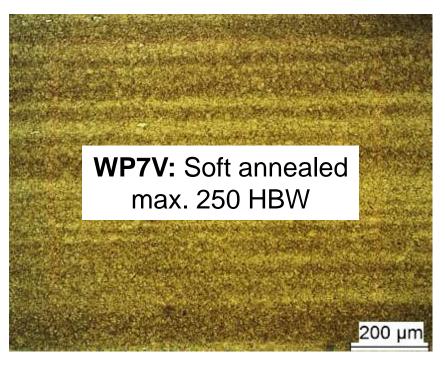
Material	С	Cr	Мо	V	Delivery Condition
1.2344 (H13)	0.40	5.30	1.40	1.00	Soft Annealed
1.2367	0.38	5.00	3.00	0.50	Soft Annealed
WP7V	0.50	7.80	1.50	1.50	Soft Annealed

Special Properties of WP7V

- 1. Hot Stamping Tools
- 2. Features of WP7V
- 3. Benefits of WP7V
- 4. Technical Information

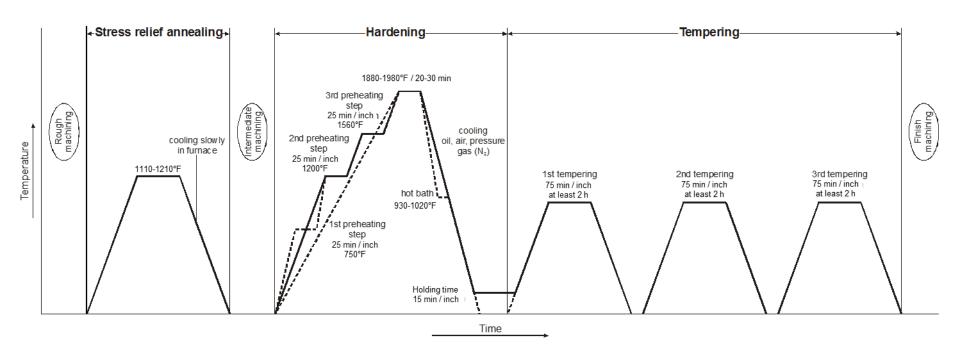
Benefits of WP7V in Hot Stamping

Features of WP7V	Benefit in Practice
High hardnessHigh wear resistance	Longer lifetimeLess maintenance effortHigher productivity
High toughness	High process reliabilityLow risk of fracture
Good hardenability	Easy heat treatmentLow risk of fracture

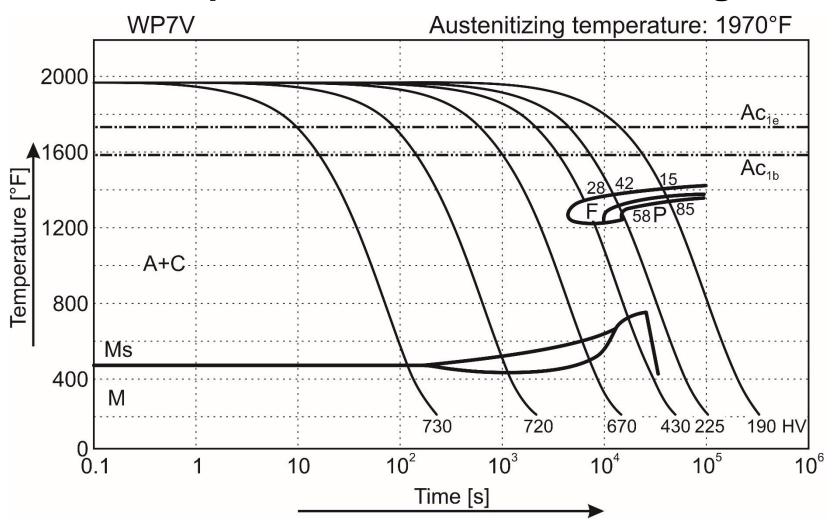


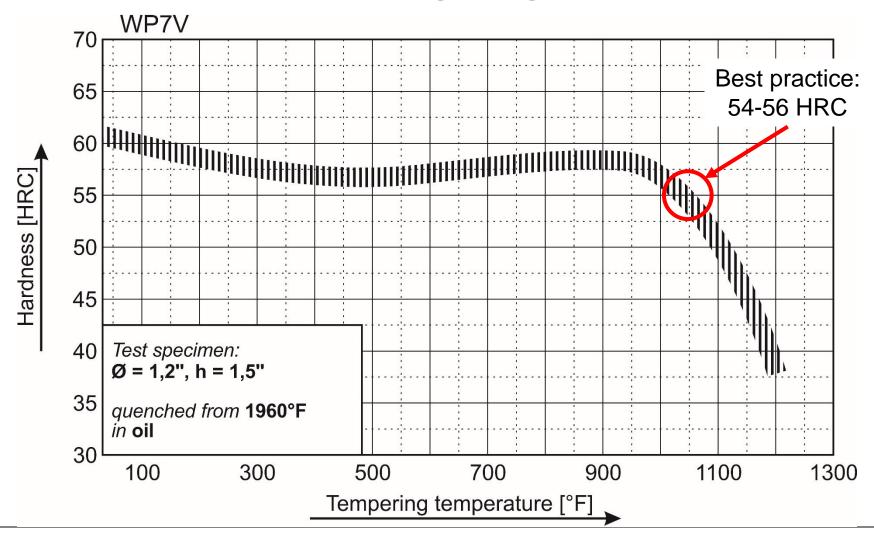
- 1. Hot Stamping Tools
- 2. Features of WP7V
- 3. Benefits of WP7V
- 4. Technical Information

Delivery Condition


Standard sizes:

- Flat
- Width: 155-900 mm (6.1-35.4 inch)
- > Thickness: 40-400 mm (1.6-15.7 inch)
- Squared
- > 100-230 mm (4.0-9.0 inch)
- Round
- > 22-285 mm (0.9-11.2 inch)


Heat Treatment Recommendations


Time Temperature Transformation Diagram

Tempering Diagram

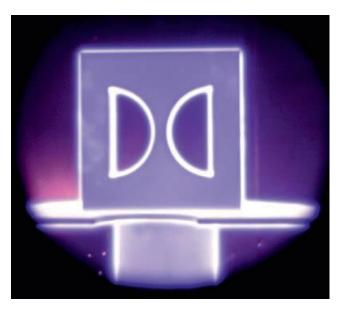
Tensile and Yield Strength

Hardness	Yield Strength	Tensile Strength	Elongation at	Impact Toughness in J	
in HRC			ksi Rupture in %	unnotched	notched
50-52	-	-	1	200-220	1
54-56	230-250	290-310	≤ 5	-	6-8
55-57	-	-	-	180-200	
58-60	-	-	-	110-130	-

Data was determined by means of measurements on heat treated tensile specimens. Scattering bands are broader for big heat treated dimensions.

Physical Properties

Hardness in HRC	Temperature in °F	Thermal conductivity in W/mK	Thermal expansion coefficient in 10 ⁻⁶ ·1/K*
	68	25	-
	212	26	11.7
42-44	392	28	12.3
42-44	572	29	13.8
	752	28	13.9
	932	28	13.8
50-52	68	24	-


Thermal expansion coefficient was determined with a reference temperature of 20°C (68°F):

$$\alpha_{th} = \frac{1}{l_{RT}} \cdot \frac{l_T - l_{RT}}{T - RT}$$

Surface Treatment

Plasma nitriding:

- Surface hardness: 900 1250 HV₁
- Nitrided case depth: ≤ 0.2 mm
- Tempering first (above Secondary Hardness)

Coating:

- PVD
- No benefit for hot stamping

Welding

	Annealed	Q+T		
1.	Grinding and cleaning of the weld zone			
2.	Heating up to 752-842°F, do not drop below 572°F during processing			
3.	Short welding seams (EnDotec DO*15, FONTARFILL 760), for bigger welds use buffer layer (Castolin Xuper 680 S)			
4.	Hammering of the hot welding zone after each seam			
5.	Slow air cooling, soft annealing at 1500-1580°F with furnace cooling (hardness of weld zone: 200-300 HB) Slow air cooling down to 180-210°F, tempering at 930°F immediately			
6.	Machining of the weld zone			

Welding in cold condition is not recommended for any hardenable tool steel!

Machining

Drilling

Cutting Material	Rot. Speed in ft/min	Feed in thou/rev	Drill Ø in inch
HSSa	26-46	1.5-5.5	0.315-0.630
HSSa+Coating	59-75	4.7-7.8	0.315-0.630
CC _p	131-197	2.3-11.8	0.787-1.850

^a High Speed Steel

Turning

Cutting Material	Rot. Speed in ft/min	Feed in thou/rev	Depth of cut in inch		
	Rough mad	chining			
HSSa	49-82	7.8-15.7	0.079-0.157		
CC _p	197-459	11.8-23.6	0.079-0.197		
CCb + Coating	410-640	15.7-39.3	0.118-0.315		
	Finishing				
HSSa	82-164	3.9-7.8	0.020-0.039		
CC _p	262-525	3.9-11.8	0.020-0.039		
CCb + Coating	656-1050	3.9-15.7	0.030-0.118		

^a High Speed Steel

Milling

Cutting Material	Rot. Speed in ft/min	Feed ^c	Depth of cut in inch			
	Rough machining					
HSSª	33-59	0.787-1.575	0.236-0.394			
HSS ^a +Coating	98-148	0.787-3.150	0.236-0.394			
CC _p	197-328	0.008-0.016	0.236-0.315			
CCb + Coating	295-492	0.008-0.016	0.079-0.236			
	Finishing					
HSSa	49-82	1.181-2.362	0.020-0.079			
HSS ^a +Coating	148-230	2.363-5.511	0.020-0.079			
CC _p	230-427	0.039-0.118	0.020-0.079			
CCb + Coating	328-558	0.394-0.787	0.039-0.079			

a High Speed Steel

b Cemented Carbide

b Cemented Carbide

^b Cemented Carbide

c HSS: inch/rev, CC: inch/tooth

